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MINRODU GTION

-= a previous work, [1,3-1 -have astanzed the exictence of a

genereJ type of convection-diffusion theorem in contnuum mechanics,

mind Iv° st.udied, the properties of this type of theorem. In this

report I-demm trmate that, given a tensor of any order associ.ated

Wih the motion of a continumi, at least one such theorem exists.
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P. NATHD k'±s (AL HIEIJNINAEIES

I use, essentially, the notations and assuiptions of

Trueadell and To-pin [2]. A short synopsis is included here in

order to make this work essentially eif-contained. It is empha-

sized that this work is formal in nature. In particular,

statements concerning smoothness conditions on functions are sel-

dom made. In general it is understood, as in formal works on

differential geometry, that all functions are smooth enough to

acccmodate the manipulation performed and render the results

mean-ngful. No distinction is made between a function and its

values, except where confusion would result if this distinction

worn not made.

The results derived here:are valid in Euclid 2n three-

dimensonal apace. In such a space a. rectangular Cartesian

Scoordinate syste always exists. We denote points in this system

by the symbols z. A motion is a cne-parameter wping-

where ' is a. real-valued parameter interpreted as the tde. A

point . called a particle and a point z is called a place or

space-An dt.

We choose a single curvilinear coordinate system given by

XaW Xsg(~ 02

where g is the same fumction in both -aticns. The X are called
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material cog dingte, and the x are called satlzal coorlinates.

It in convexient to use two systeme of notatior The 11-

tation of general, double tensors is used when It is denfred to

emphasize the com~ponents of an equation*. H{ere capita3. t oman*

indices denote quantitiLes which transfom as tensors ith reinei

to changes in the material coordinates X, and lower-case Romr.
ALYV

indices denote quantitieu which transform as tensors with ivipc

to the spatial coordinates x L Thp diagoral summnaiz convention

is used, and all indices hwite the values 1.,2,3.

When -display of indices would cloud the physical aigrii-

icarce of an equation, direct notation is used.

Let arc lengths at X and x be given by

~2in~A~3(0.3)

d2 =

g4B an a are the components- of the contravariant material and

spatial meri tesr Cristoffe3. syrabols based on these tensors

are defined 3A thle usual Manner.

Let 9;.x,;cX) be the cmponents of a mixed double tensor

fhel. The r~otation denotes the covariant deivative of

F Ilbouble tensor fields are discussed in greater detail in C 3).[ '1Tis -4s a aelig1, departure from the notation of 1J, -which user
lower-cast Greek indices in this situation and upper-case Roman. in-
dices when the spatial and material coordinates are independently
selectod.

"Serh exceptions are, of course, the sets of coordinates X,XA
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a
with respect to X when the x are held constant. This derivative

is called the Racial covariant derivative * and is denoted by a

.,B aAB5C~ (0.4)

where x is performed with a 1 . of the x, and all of the

D 3 B, held constant.

The partial covariant derivative with respect to spatial

coordinates is defined in an analogous manner.

Let a one-parameter mapping between x and X be given by

the composite of (0.i) and! (0.2),

xX ,v), ]t- am)a. (o.5)

-The-j graz t derv&tive of a mixed double field t. Z*;(x,X) is

giveziby

I: fl, + .. *:; (0.6)
a

This derivative has the properties that when :a is of the

form 0 -'(i) or $a3b (x), then 4.8 reduces- to V-**FOr V:

respectively, and if the operation ;F is performed on $(xX) then

This discussion on partial and total covariant derivatives is
baed on t3).
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x is replaced by x(X,t), the Fame result is obtained as if the oper-

atiOnl ;E were perfonm~d on /:{(x, tV)
- Let

;a a:: + ::" ax (0.7)

if we define the Kronecker delta in the uual m a, n then

u ae axk _ a a A (o.8)
A b 0 b axa x 6B (

dA ax

and by (0.6) and (0.7)
pr

- U @;:;At :;a (0.9)

r :2; , X:2A .•o.1o)

T~

Deformation Erdints are defined by

Ig

"WA

£ _ ~ A 1 a a x a ( . 1
-a a. A aX

S- rajt deformation gradients are given by

- ... b (o.a)
gb

The extunion is the absolute scalar J given by



f detb det

The velocity of a particle is given by

• a 3 (0.15)

where the partial derivative is taken with X held constant.

Let (x,Xjt) be a double tensor. The material derivative

of is the double tensor ,,ith components

d X:-.:: : + kg
tdt " g (0.16)

where the partial time derivative is taken with both x and X held

fixed, and , g denotes the partial covariant derivative with respect
g

to x . This derivative is a double tensor whose value is independent

of whether x is replaced by x(X,t). It is often convenient to write

Sc) =(').

In this work, we adhere to the convention that either tie

material or the spatial description is used, but not both. That is,

all functions are written in terms of x and t, or in terms of X and

t.

It is well-known that*

A.- a *a a. )b (0.17)
dt -A $,AX bX

[i] 1§76.
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Let J be given by (06.14). Then Eue' expansion formula

is

-- l (0.18)

The acceleration is defined by

-*.a da (0.19)
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1. A COICTATION FORMA

Consider a double tensor field with conronent t Dc

We have

r 3 ,0 ,C 0D , QL

so that by( )

1A A.. B a ~

C.Dee DoB 0

49C-



-: ~~By (44 ,ti '1,- Ic t-LotiVst

-t -b c'~~'

py .11b I

.. ol 'E C-D's k e

-Al (o-) -B.( pk.e

By (1.4), (.)is

dtk..Dj "CDc,F ~(9

' E2)1,p. 338.



for a tensor of the fom conse4ercd sa4 the pcrtiQal cvriant

In Xact, the proof given abov exends easily to the

rn rl case =f any tensor function with ary combination of covariant

- - cpntravariant, material and spatial indices. That is, for am

-t-n._ r fmtnction. -  of the type considitee here) "- and

dtd -E 'E

MA (1.10)

A for.ula- an - gous to (1.10) but containing a spatial

vad int if _14'-L U aiing (1.10) and zn obvious generalization of

%dt -e X- ;

By the 1 a (0.17), this Ibeceo

Multiplying (1.12) by A81.Z. using (0.8), and rurranging some

indiosa gives

at . dt. e x

' " " *(1.13)

dt(rad N)-grad dt) g- -ga gradi
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which ir the desired result.

The equatione (1.10) and (1.13, are equivalent, It will

be shown that either can be used in deriving a certain special but

important type of convection-diffusion theorem.
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2. G)-'M2AL CONVEC1TION-fIFFUSION THBREMS

A survey of recent developments in convection-diffusion

theory and a study of the properties of a convection-diffusion

theorem of a very general type have been given in [1). In this

section I demonstrate that, given a property of a particle of a

continuum, with the property expresosd as a tensor of a certain

form, there is alwanys a convection-diffusion theorem for that

property. Furthermore, thhc convection-d.f±fusion theorem is a

special case of the type studied in [l].

Consider a composite deformation gradient Fal' -an (no sum-

mation on n). An explicit form for its material derivative has been

given inEll). It is

Ar *An i-1l n,. A (2.1)

An easy calculation leads to

n aa

-r~l...V A1..Ai- A± J~j - A (2.2)

n A

nA a ~ ayA..A ..A~ .. a
a a 1 ~a 1  23

*.. V A.i l . A~
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.a..an al...an an  al...an.1 A
FAV..A A ... A +X Jv F A (2.4

n 1 n r n-

Consider a tensor with covariant components aa...b" Fomn

the material expression a.. !"". Then

a a... b A .B
. -b +a

dt a ,b A..B)  a ...b A...B a..b A.-B (2.5)

Integrating along the path of a particle yields

b a

a..b FA..b AA-.B J (a...b A-::B aa...b B/u-B (2.6)

where AA .B is the value of aa.b at t-0. Using the definitions

(0.12) and (0.13) and the property (0.8), we obtain from (2.2) the

_ m convection-diffusion theorem

£ 

,c.d + at ... a ... B

a [AFA")dtl ~..
a... b AAB +fB adA )dr A...B (27)

This equation states that the present value of a associated with a

particular particle is the result of two processes. The first,

exprossed by the term

AA.B a... b

is the shift of the initial value of a to its present position, ar

is independent of the intervening motion. It is called convection.

Thia can be fturther simplified by using (2.2).

13
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The second process, expressed by the integral

(a c... d "A ... B ac... d rA...B;U

is called diffusion. It is seen that diffusion is a functional of

the histoies of and the motion. It has been pointed out by

Pasoan 41 that convection and diffusion are not unique processes.

The special case of (2.7) where a can be written as the

spatial gradient of another tensor is of considerable interest in

continuam mechanics. Let there exit a tensor b such that

... e a...b,e • (2.)

The appropriate form of (2.7) is

t.d,f A J a... "..J M- (1.3) -. beoe

..b,o [A...BE +5 (C...df- b u uI "

Substituting (2.4) into (2.10) gives

!" +S ... B

b..b,e " [BA.,B,E ( b6 ...d,f "F..j ,

. ...df A
+ b-..df, a... be (2.11)

B) b

baB.. E 
_.d



Most of the convection-diffusion theorems familiar in continum

mechanics are consequences of (2.1-1).

The important relation (2.11) can be derived by an alter-

nate method. Form the material expression b .bE Fa**B' By the

cozmiutAtion formula (1.10)

dt a ...bE A.B~ ba, ..b,E A_.:Bba... bE A..B (2.1-2)

whiich by-the generalization of (1.4), is

d b A-~..bea.b

+ b.b~ (2.13)

The resul~t (2.11) follows by the obvioue sequence of steps.
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